Basis for substrate recognition and distinction by matrix metalloproteinases.

نویسندگان

  • Boris I Ratnikov
  • Piotr Cieplak
  • Kosi Gramatikoff
  • James Pierce
  • Alexey Eroshkin
  • Yoshinobu Igarashi
  • Marat Kazanov
  • Qing Sun
  • Adam Godzik
  • Andrei Osterman
  • Boguslaw Stec
  • Alex Strongin
  • Jeffrey W Smith
چکیده

Genomic sequencing and structural genomics produced a vast amount of sequence and structural data, creating an opportunity for structure-function analysis in silico [Radivojac P, et al. (2013) Nat Methods 10(3):221-227]. Unfortunately, only a few large experimental datasets exist to serve as benchmarks for function-related predictions. Furthermore, currently there are no reliable means to predict the extent of functional similarity among proteins. Here, we quantify structure-function relationships among three phylogenetic branches of the matrix metalloproteinase (MMP) family by comparing their cleavage efficiencies toward an extended set of phage peptide substrates that were selected from ∼ 64 million peptide sequences (i.e., a large unbiased representation of substrate space). The observed second-order rate constants [k(obs)] across the substrate space provide a distance measure of functional similarity among the MMPs. These functional distances directly correlate with MMP phylogenetic distance. There is also a remarkable and near-perfect correlation between the MMP substrate preference and sequence identity of 50-57 discontinuous residues surrounding the catalytic groove. We conclude that these residues represent the specificity-determining positions (SDPs) that allowed for the expansion of MMP proteolytic function during evolution. A transmutation of only a few selected SDPs proximal to the bound substrate peptide, and contributing the most to selectivity among the MMPs, is sufficient to enact a global change in the substrate preference of one MMP to that of another, indicating the potential for the rational and focused redesign of cleavage specificity in MMPs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural bases for substrate and inhibitor recognition by matrix metalloproteinases.

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases which are involved in the proteolytic processing of several components of the extracellular matrix. As a consequence, MMPs are implicated in several physiological and pathological processes, like skeletal growth and remodelling, wound healing, cancer, arthritis, and multiple sclerosis, raising a very widespread inter...

متن کامل

P 88: Matrix Metalloproteinases in Neuroinflammation

Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important in normal development, cellular differentiation or migration, angiogenesis, neurogenesis, wound repair, and a wide range of pathological processes such as oxidative stress and neuroinflammation. MMPs have been demonstrated to increase the permeability of the blood–brain barrier (BBB) by degrading the c...

متن کامل

Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates

Matrix metalloproteinases (MMPs) are extracellular proteases that can cleave extracellular matrix and alter signaling pathways. They have been implicated in many disease states, but it has been difficult to understand the contribution of individual MMPs, as there are over 20 MMPs in vertebrates. The vertebrate MMPs have overlapping substrates, they exhibit genetic redundancy and compensation, a...

متن کامل

Repression of Matrix Metalloproteinases and Cytokine Secretion in Glioblastoma by Targeting K+ Channel: An in Vitro Study

Introduction: Glioblastoma is an aggressive malignancy of human brain with poorly understood pathogenesis. Voltage-gated potassium (Kv) channels and Matrix metalloproteinases (MMPs) are highly expressed in malignant tumors and involved in the progression and metastasis of glioblastoma. The purpose of this study was to determine whether a voltage-dependent potassium channel blocker could modulat...

متن کامل

Comparison Of Chlorhexidine 2% And Sodium Hypochlorite 5% As Rewetting Agents On Resin- Dentin Micro Tensile Bond Strength

Resin- dentin interface hydrolysis is one of the greatest problems in restorative dentistry, Because of collagenolytic and proteolytic activity of dentin enzymes. The aim of this study was to compare the effect of CHX 2% and NaOCl 5% as rewetting agent on resin-dentin micro tensile bond strength.Methods: 45 extracted, human caries-free third molar teeth were collected. After exposing of superfi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 40  شماره 

صفحات  -

تاریخ انتشار 2014